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INTERFERENCE-REJECTION PROPERTIES
OF A QUANTIZED CORRELATOR APPLIED TO A

KINEPLEX TYPE OF DATA TRANSMISSSION SYSTEM

INTRODUCTION

Various data transmission systems, typified by Kineplex,*t transmit simultaneously
an ensemble of, say, 20 pulsed tones of about 13.5 ms duration, each of which is inde-
pendently phase-shift keyed in quadrature by two binary bit streams. The receiver employs
matched filters, using differentially coherent detection.t However, considerations of size,
weight, cost, and reliability suggest the use of suboptimum but simpler devices employing
quantized correlators (QC). Each tone requires a filter not merely to reject Gaussian noise
but especially to reduce interference from the unwanted tones. In a Kineplex system the
interference from the unwanted tones can be completely eliminated in principle, provided
the tone frequencies and the matched-filter integration times satisfy certain relations.

This complete elimination of interference is permitted by the coherence of the
interference, which allows the interfering signals to be properly summed so that they can-
cel. In a time-sampled variant of the Kineplex system, we shall see that again the unwanted
tones can, in principle, be completely eliminated, provided certain relations between the
tone frequencies and the number of samples are satisfied. However, a QC that sums an
r-bit approximation to a superposition of tones injects quantization noise which prevents
the interference from totally canceling. The object of this investigation was to determine
how the probability of bit error arising from the mutual interference of the pulsed tones
varied with the number of quantization bits of the QC.

DEFINITION OF A KINEPLEX SYSTEM

In a Kineplex type of transmission system the receiver obtains a time sequence of
baseband waveforms, thus, J

y = AEcos (wojt+rl - ,ij), 0 < t < T (1)

J
y' = AZ cos[wj(T-t)+ yj- pj], T 6 t 6 2T (2)

j=1
where y is received during the interval 0 < t < T, y' during T < t < 2 T, y" during

*E. T. Heald and R. G. Clabaugh, "A Predicted Wave-Signalling Phase Shift Telegraph System," Proc. IRE
45, 316-319 (July 1957).
fS. Stein and J. J. Jones, "Modern Communication Principles," McGraw-Hill, New York, 1967, p. 249.
Note: Manuscript Submitted April 10, 1975.
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2T < t 6 3T, etc. Each waveform comprises a superposition of tones of fixed frequencies
fj = wj/2 7r. The phase of each tone consists of a random phase yj whose shift during an
interval 2T is neglibible, plus a phase modulationvj = ir/4+mjr/2, where my = 0, 1, 2, 3.
The information is obtained from the difference in phase between two identical tones in
successive frames, ,ij - pj, which can take on the values 0, ir/2, 7r, 3ir/2 from which the
quaternary coded message may be deduced. The problem of how two independent binary
data streams are encoded for differential coherent phase-shift-keyed detection so that the
data streams may be inferred from the phase difference ,4 - guj is discussed at some length
in Appendix A. However, the essential problem we address is how to infer gji - plj for
j = 1, . . . J, despite the other J- 1 interfering tones.

THE CLASSICAL MATCHED-FILTER KINEPLEX SYSTEM

To obtain the kth signal, the input (Eqs. (1) and (2)) is processed to determine

1 BT
Xc =11f y co5CkTdt (3)

0
and

x T ysin COkt dt, (4
0

with similar expressions for x'c and x'. Let

P1yj= - j (5)

Ajk= j- Wk

Sik = Wj+Wk . (6)

Substituting Eqs. (1), (2), (5), and (6) into Eqs. (3) and (4) results in

J
A E L sin JkT/) cos (SjkT/2+j)+ in (Ajk T/2) cos (AjkTI2+1)] (7)

j=1 1i

and

=A E [sin (SikT/2) sin((Sjk T/2 + 0j) - sin(Ajk) sin (Ajk T12+j)] * (8)

j= 1

If the frequencies fj = wj/27r are chosen so that

AjkT/2 = 7r(fj - fk) T = miki7 (9)
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(mjk an integer), for all j and k, and if Ajk : 0, then every term in the second sum of
Eqs. (7) and (8) will vanish except the term for which Ajk = 0. Also, if the fj are chosen
so that

Sjk T/2 = 7r(fj+fk )T = njk1T, (10)

then every term in the first sum of Eqs. (7) and (8) will vanish. Accordingly, if Eqs. (9)
and (10) are satisfied, then

A- A
Xc =-coS Ok = 2 COS(Yk-Pk) (11)

and

A A.xs 2 sinfk =2 Sin(Yk-k)- (12)

From similarly processing y', one obtains
A

Xc= Cos(Yk-ik) (13)

and

sin()Yk-Pk (14)

In general, at the receiver one has Gaussian noise plus a residual amount of interference
which does not cancel because of frequency shifts, phase fluctuations, etc. We will assume
that the resultant interference behaves like Gaussian noise and that Eqs. (11) - (14) may be
written more properly as

XCA
X= 2 coS((k -Pk-) + nj (15)

xs = A sin(-Yk-Pk) + n2 (16)

X=2 COS('k-k) + no (17)

xs, =2-A sin(yk-,k)+fn2 (18)

where n1 , n2 , n1, n2' are assumed to be statistically independent Gaussian variables, each
with zero mean and variance v. In Appendix B we show that if one is given the four observ-
ables x0, x,, xc, and xs, which are defined operationally by Eqs. (3) and (4) and have the
structure defined by Eqs. (15) - (18), then the optimum decision procedure from which the
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value of pj'-pj may be inferred consists in determining the maximum of the four functions
Fa, Fb, F0 , and Fd. Thus, if

Fa= xcxc + x~x, is maximum, - p1 0; (19a)

Fb = xCxS - xCx, is maximum, - = 37r/2; (19b)

FC = -Fb is maximum, pj - j= ir/2; (19c)

and

Fd = -Fa is maximum, Pj - Pi= r . (19d)

TIME-SAMPLED KINEPLEX

Before considering a quantized, time-sampled version of a Kineplex transmission
system, it is convenient if we consider first a time-sampled, unquantized version. We
assume that synchronization already exists, so that the onset of the different waveform
sequences is known. The input waveform of Eq. (1) is sampled and summed with alternating
polarity every half period of the desired frequency fs, determining a sinusoidal component
of that frequency. The filtered input is thus

Ns

1c E (k1) y[t+(k-1)Psl2], (20)

where P. = 1/f5 and Ns = number of samples. Introducing an additional time delay of P5 /4
and similarly sampling generates the quadrature component

Ns

L 1E (-l)k-I y[t+(k-1)P,12+Ps14] (21)

Defining

'pj = Wjt+'yj- pj (22)

and

Ai = irfjPs/2 - r /2 = iT (fj - fs)/2f, X (23)
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substituting Eqs. (1), (22), and (23) into Eq. (20), inverting the order of summation, and
summing over k yields

J

YC =A cos[,Pj+(N -_1)Aj] sin N5Aj/sin AL. (24)

Similarly operating on ys yields

YS=N E sin (soj+NsA 1 ] sin NsAj/sinAj. (25)
s j=1

To have the interference in Eq. (24) vanish requires that

N5Aj = pir (p an integer) (26a)

and simultaneously that

sin Ai * 0. (26b)

Since A1 = 0 for j=s, conditions (26) reduce (24) and (25) to

Yc = A cos soj = A cos(wjt+,yj-pj) (27)

and

=s -A sinspj = -A sin(cojt+,yj-Ij) . (28)

Similarly, the corresponding filtered in-phase and quadrature components for the succeeding
waveform are determined; namely,

YC = A costsp A cos (cojt+ -y -ii) . (29)

and

Ys -A sin<so -A sin(cojt+y j -uj) (30)

Since yj and hence wjt+,yj are randomly distributed angles, the above expressions for Yc,
Ys, Yc' and ys' are entirely equivalent to the classical matched-filter case of Eqs. (11) - (14),
so that the same considerations regarding optimum decision functions apply. Thus the
maximum-likelihood estimate consists in attributing that value of M' -P which is associated
with the maximum of the four functions enumerated below.

5
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Case

a

b

c

d

Function

F.= ycy, + ysys

Fb = YcYS -YCYs

F, = -Fb

Fd = -Fa

(/I')
0

3ir /2 (31)

r /2

7T

QUANTIZED KINEPLEX MODEL

We now consider a quantized time-sampled correlator in which, instead of taking precise
samples with alternating polarity at every half period of the desired frequency, the samples
are quantized to r bits of the sampled input. A schematic of a 2-bit quantized correlator
is shown in Fig. 1. A straightforward analysis similar to that in the preceding section
swiftly becomes unreasonably complicated, even for a 1-bit approximation to the sampled
input, so that simulation is required.

POLARITY IST DIGIT
ALTERNATOR r

Fig. 1-Kineplex receiver using 2-bit quantized correlator
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How to specify the quantizer was solved by Max* who studied the problem of
minimizing the mean square error between the input and output of a quantizer for fixed
numbers of output levels. In particular, for the case of an input signal with normally dis-
tributed amplitude, Max explicitly computed values of the optimum quantizer parameters
as well as the mean square error, (?2 = qrY2 , to be expected from quantizing a Gaussian
variable y to r bits using the optimum quantizer parameters. A Fortran program was
written for the CDC 3800 that simulated the quantized, sampled Kineplex type of system
of Fig. 1 using the frequencies and the number of samples shown in Table 1 and the
optimum quantizer parameters given by Max. The characteristic of such a 2-bit quantizer
and values of qr, r = 1, ... 5, are shown in Fig. 2.

Table 1
Frequency and Number of Samples

The time-sampled Kineplex model differs from the continuous-time model in that the
interference components of the filtered output of the former contain a factor

sin [IT Ns (fj-f 5)12f5] IN5 sin[IT(fj-fs)12fs],

whereas the latter contains the factor

sin[7r(fj- fs)T12] IT(fj- f,)12 = sin[7r N 5(fj- f5)12f5] NNsIT(fj- f5)/2f5

since T=N5 fs . It is this difference that requires eliminating frequency 605 (which was used
in the original Kineplex system) from the set of frequencies appropriate to the time-sampled
model, since, as is easily verified, the third harmonic of 605 coincides with frequency 1815,
so that the full energy of the interfering term (1815) equals the signal (605) energy in the
time-sampled case. In other words, the allowable frequencies are somewhat more restricted
for the time-sampled model than for the continuous model because of the periodic nature
of the denominator in the former case.

*J. Max, "Quantizing for Minimum Distortion," IRE Trans. IT-8, 7-12 (Mar. 1960).

7

Number of Number of
Frequency Samples Frequency Samples

yN Ns

605 11 1815 33
935 17 1925 35

1045 19 2035 37
1155 21 2145 39
1265 23 2255 41
1375 25 2365 43
1485 27 2475 45
1595 29 2915 55
1705 31 _-
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r qr

I 0.3634 OUTPUT

2 0.1175

3 0.03454

4 0.009497 0.918 O

5 0.002499 1.51 a

ir: 2qr ai INPUT

Z -F
Qr y

Fig. 2-Characteristic of symmetrical 2-bit optimum quantizer for
Gaussian input (after Max)

Returning to Fig. 2, notice that all quantizing parameters are given in terms of a = (y2 )/2
where y, the input, is given by Eq. (1). Thus, from Eq. (1),

a = A/V71 (32)

where J equals the number of tones which in our case (Table 1) is 16. For efficient use of
the quantizer, it is essential that an auxiliary circuit vary the system gain so that y 2 , averaged
over a frame interval T, is essentially constant.

SIMULATION DESCRIPTION AND RESULTS

For each time interval [0 6 t < T] and [T 6 t < 2T], the pu were chosen so that
pj = ir/ 4 + mj1ir2, with mj = 0, 1, 2, 3, the mj being randomly and uniformly distributed
except for the signal tone, for which m, = 0. The Pyj also were randomly chosen and then
fixed for both time intervals. An rth-bit estimate of the input was sampled for r = 1, . . .5,
call it Dr [y(t+(k- 1)P/2], and the samples were summed with alternating polarity to
determine Ycr precisely as in Eq. (20). Similarly to Eq. (21), the ysr were determined, and
the values of Yor, Ycr, Ysr, Ysc were substituted into Eq. (31). The maximum of the four
decision functions was determined, which in turn decided the information state. The ex-
periment was repeated 200 times for each tone tested and was carried out for three
different values of a to determine how critical its value was. The number of successful
trials as a function of bit approximation is enumerated in Table 2 for three tones situated
in the middle and at either end of the frequency band.; This table shows that the value of
o is not critical. In Table 3 the experiment was repeated with more trials, yielding
essentially the same results.

8
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Table 2
Number of Successes in 200 Trials

Table 3
Number of Successes in 1000 Trials,

with f = 935 and a = 3.26

INDIRECT DETERMINATION OF ERROR PROBABILITY

Since the probability of error is so small for quantizers more accurate than two bits
that a nonzero estimate could not be obtained by reasonable sample sizes, we decided
to estimate how accurately one could estimate the probability of error from the measured
mean and variance of the statistical decision functions, Far and Fbr (Eq. (31)). If the
subscript r, is dropped the probability of inferring Case a is the probability that (a)
Fa > Fb, (b) Fa > -Fb, and (c) F 0 > -Fa (see Eq. (31)). Since condition (c) is fulfilled
if (a) and (b) are fulfilled, the probability of inferring Case a simply equals the probability
that F 0 > IFb I . We assume that F 0 and Fb are independent Gaussian variables. Experi-
mentally (and also theoretically) the mean of Fb = 0, and the variances of Fa and Fb are
essentially equal. If we designate the mean of F, by a and its variance by s2, then

Pa(X) = 1 e-(x-a) 2 /2s 2 , -0< X 0O (33)

9

Tone Frequency, Bit Approximation
Number of _7_ _

Samples a 1 2 3 4 5

f= 935 2.89 134 193 200 200 200
Ns = 17 3.26 134 194 200 200 200

4.00 134 195 200 200 200

f= 1705 2.89 147 199 200 200 200
Ns = 31 3.26 154 198 200 200 200

4.00 154 200 200 200 200

f = 2475 2.89 184 199 200 200 200
Ns = 45 3.26 178 200 200 200 200

4.00 178 200 200 200 200

Bit Approximation
1 l 2 3 4 5

678 961 1 1000 I 1000 1000
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and

Pb ) = 1 e-x 2 /2s2

Pb 2x) e
- < X< 00 (34)

are the assumed probability densities of Fa and Fb, and

PC(x) = e-x 2 /2 2 x> 0 (35)

is the probability density of IFb I . Then if P designates the probability of success (Case
a in the experiments), it equals the probability that Fa- IFbI > 0. Or,

P= fm
Z=O

JCO
X=Z

p,(x)p,(x-z)dx dz. (36)

Carrying out the integration (see Appendix C) yields

P = [1+2 erf(e)+erf2 (e)]/4 (37)

where e = a/2s. Experimentally determined values of e were used to compute the
"theoretical" error probability (1-P), given in Table 4, along with the experimental
probability. Agreement between the theoretical and experimental error probabilities for
r=1 and 2 indicate that the theoretical prediction for r=3 is fairly good. Because of the
extremely small error probabilities for r=4 and 5, these are omitted from Table 4.

Table 4
Theoretical and Experimental Probability of Error for 1-, 2-, and 3-bit

Sampling Approximations

Number of Samples r Theoretical | Experimental
and Tone (bit approximation) e = aI2s Probability Probability

Frequency

f= 935 1 0.634 0.335 0.33
Ns = 17 2 1.24 0.077 0.03

3 2.58 3 X 10-5 0

f = 1705 1 0.767 0.254 0.23
Ns = 31 2 1.71 0.045 0.01

3 3.53 5 X 10-6 0

f= 2475 1 1.11 0.113 0.11
Ns= 45 2 2.06 0.0046 0

3 4.33 <5 X 10-6 0

10
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SUMMARY AND CONCLUSION

A time-sampled Kineplex data communications system employing quantized
correlators rather than analog matched filters was analyzed. Simulation studies indicate
that the probability of error arising from the mutual interference in such a system can be
made negligible.

11



Appendix A

QUATERNARY DIFFERENTIAL PHASE-SHIFT CODING

We consider two independent binary data streams, aj, bj, j=1, . . ., J, which are encoded
for the differentially coherent detection of a single differentially encoded quaternary phase-
shift-keyed (PSK) carrier.

Let 'Pj and h1i be the differential encoding of aj and bj.

Let

y=A [cos(cot+p+y)+sin(ct+ + +-y)], 0<t<T

designate a quaternary PSK carrier pulse, where 'P and ,p can take on the values 0 or ir, and
,y is an arbitrary constant.

Since sin p = sin ' = 0,

y = A [cos(cot + y) cos so + sin (wat + My) cos A. (Al)

If cos a = C and sin a=- , Eq. (1) becomes

y = V A cos (wt + y - a). (Ala)

Figure Al correlates the pair (p, ') and underneath (cos p, cos ')with the
corresponding angle a. Let one also be given the succeeding waveform

y' = /i cos (cot + y - a'), (A2)

where a' is the value of a occurring in the emission immediately following y, say in the
interval (T < t < 2T) where the new values of ep, ' are p', 'P'. Here we refer the
functional form of Eq. (A2) to the preceding interval, 0 < t < T.

We multiply the input y (Eq. (la)) by cos cot and integrate to obtain

1 T A
= - N y cos wt dt = - cos ('y-a),
TJ (3)

where we have neglected the double frequency. Similarly,

if ~~A
X2 = y sin cot dt sin (,y-a). (A4)

T- 

12
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-I, I

0,0 ( +4)

,K (COSO ')COS

7T,71F 0,77r

-l,-l 1,I1

Figure Al-Graphical representation of 0, 0p or cos 0, cos ip

as a function of a = tan- 1 (cos p /cos ¢)

Also, from Eq. (2),

1 TA
TJXil=T Y' cos W t dt =2cos (Ta') (A5)
0

and

71 A

y' sin cot dt = -- sin (y-a'). (A6)

0

To eliminate the random variable y from the observables x1 , x2 , xl, and x'2 , we form

Z1 = x1 x' + x2 x = A2 cos (a'- a) (A7)

and
A2

Z2 =x 1XI2 - x2 xI, = 2 sin (a' - a). (A8)

To relate ,p, ' and 'p', '', the corresponding values of ip, ' in the succeeding waveform,
to (a' -. a), one observes values of

A2

Z1= A 2 [cos (a'-a)] = 2 (cos 4po cos ,o' + cos 'P cos '') (A9)

13
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and

Z2 = A2 sin (a'-a) =-(cos '' cos 0 - cos so' cos ')
2

for all possible (so, ') and (so', '') values. This is shown in Table Al, where we have
omitted the factor A2 /2 which is irrelevant.

Table Al
Parameters z1 z2 as a Function of

(so, 'P) and (so1, ' 1)

(AlO)

In Table A2 we have rearranged Table Al to indicate more clearly which 2-sequences
of so and ' are equivalent with respect to the indicator pair (Z1 , Z2 ) = cos (a'-a),sin (a' - a)

Table A2
Values of (sp, 'P) and (,o1, ' 1) Corresponding to a

Unique Value of (z1 , Z2 )

14

Values of so 1','P'
sp oP 00 O 1r m 0 1r 7r

0 0 1,0 0,-i O,+1 -1,0
0 7r 0,+1 1,0 -1,0 0,-i
7r 0 0,-i -1,0 1,0 0,+1
7T Ir -1,0 0,+1 0,-i 1,0

Case Z1, z 2 J Quaternary Coding

a 1, 0 0,0 0,0 IT,ir 7T,IT

a 1, 0 0,0 iT,iT 0,0 7r,7r

b 0,-1 0,0 0,7r 7r,0 ir,7r
0,7r 1T,77 0,0 irO

C'+1 i0,ir 0,0 7r,7r Ir,O

c 0,+i 0,0 7r,0 0,ir ir,7T

d -1, 0 0,7r 0,7r IrO Ir,0
O,ir I7,0 0,7r r,0 _
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Thus, the four possible encodings indicated on the first line are equivalent to the
observation z1 = 1, Z2 = 0. These situations are those for which there is no change both
in so and in '. Similarly, z1 = 1, Z2 = 0 is the indication corresponding to the case in
which there is a change in both sp and '. On the other hand, it is not possible to
differentiate from the case in which there is a change in so and no change in ' from the
case in which there is no change in so and a change in ', since the observable (Z 1 , Z2 )
does not define these cases uniquely. It is instructive to graph the set of equivalent
2-sequence pairs, as in Fig. A2.

r17o 0,0 7 00,0 7r, o 0,0 7iro 0 . 00l 8,00 0

o 1.co 4 0 0Co

x7 77T 0,7r 0,77. 77o,7T o,7r 777r 0,77

(A) (D) (C) (D)

Fig. A2-Graphical representation of Table 2, in which p, Vp and O', tp' are represented by the initial
and terminal points of an arrow. In Fig. A2a, the arrow has zero length.

Thus Fig. 2d depicts the possible state transitions corresponding to z1 , z2 = -1,0. Here,
the vectors designating the transformations indicate a transition, say, from the initial state
,o = 0, ' = 0, to the succeeding state 7r, 7r, or conversely. Also from 0, 7r to 7r, 0 and
conversely. Thus, Case d in Fig. 2d corresponds to a rotation from the initial to the final
state vector of ±ir radians. Case a corresponds to a rotation of 00, Case b corresponds to
the set of clockwise rotations of 900, and Case c corresponds to the set of counterclock-
wise rotations of 900. Since the sets of initial to succeeding state transitions do not
overlap and are exhaustive, we can map each of the four possible transition sets cor-
responding to a given value of Z1 , Z2 into a quaternary information symbol. One such
mapping is shown in the fourth column of Table A2, headed "Information Code." With
this mapping or code, if ( aj } and { bj } are two binary messages where

(aj = 1 0 0 1 1 0 1

{bj} = 1 1 0 1 0 1 1

and if 0, 0 are used as initial reference digits, the encoding of { a }, { b } into so, '
sequences would be

so: Oir ir 000ir
vP : Or 00r 0 r0.

15
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Thus, of the four possible pairs of 2-sequences corresponding to a1 =1, b1 =1, the only
pairs initially 0 are so = 0,ir and ' = 0,7r. Similarly for a2 = 0, b2 = 1, the pairs so = ir,ir

and ' = 7r, 0 are the only admissible ones beginning with ir. And so on.

To determine the information code from the observation Z1 , Z2 (see Table A2), one
first determines whether 1z1 I or i21 is the larger. If the former, then one determines
whether z1 > -z 1 ; otherwise, whether Z2 > -z 2. Or, one determines the maximum of
the quantities z 1 , - Z2, Z2, - z1 and infers cases a, b, c, or d accordingly.

16



Appendix B

DERIVING THE OPTIMUM ESTIMATOR

0
We are given sample values of the four variables x0 = x 0, 4 ' , x' whose functional

form is given by Eqs. (15)-(18):

A
Xc =2 Cos(Yk-plk) + nj (B1)

A
Xs = 2sin(-Yk-Pk) + n2 (B2)

Xc = Cos(Yk-14) + n' (B3)

x5- sin('Yk-jk) + n2 (B4)

The probability of getting the particular sample values x0 varies, of course, with the
particular values of ,u, j'. According to the principle of maximum likelihood, the optimum
decision on the value of p, ji' to be inferred from the observed values x0 is that value of
p, g' which maximizes the probability density of x at x 0.

From Eqs. (B1)-(B4) the probability density that x will assume the value X is

P = - exp ( 2 1 [XC _ A2 cos(-y-) ] 2 + [Xs + 2sin(5 y- M)] 2
4ir2v k2u2 2

[ A Asi(y112 15
[Xc 2 2 cos(y-p')] 2 + [Xs + 2sin(- (B5)

After simplifying, the argument of the exponent becomes

XC2 X.,2 + 2 12A 2 1
( ~ { (Xc2 + Xs2 + Xc 2 + x52X + 2 -A [cos(X, cosyu + Xs sinu + X cosu' + Xs sinju')

+ sin-y(XC sinsu -Xscosp + X, sing'-X, cose')]}). (B6)

Letting

B = exp I-[X 2 + x5 +Xc2 +A2I2] 2 /47r2v,

17
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we can rewrite (B5) as

P = B exp {2[X2 + X2 + Xc + Xs'2 + 2 (XcXc + XXs) cos()'-y)

+ 2(XCXi-X4X,) sin(p'-y )1 cos(Y-t)}

where

tan 7i = CID,

and

C = Xcsinp -Xscosji + Xc sinp'-Xscoss'

D = XcsingL -Xscosji + X4, sinju' -Xscosu'

Since y is randomly and uniformly distributed over the interval [0,27r], the average
probability of X is

27r

p = _ { P(y)dy.
27r 

0

Or,

= BIo (1 2[ +X 2 + X - X42 + 2(XcX, +X8Xs)cos(p' - p)

+ 2(XcXs - X8 ) sin('-g)] )

since

1 (r) =-JiT erco swdpo,

0

where I(r) is the zeroth-order modified Bessel function. Since I(r) is a monotonically
increasing even function of r, the value of p'-,i which maximizes any monotonically in-
creasing function of the argument of I,, such as the square, also maximizes IO. Accord-
ingly, for given Xc, Xs, Xc, Xs the value of p'-,u which maximizes

F = (XcXc + XsXs) cos(p'-p) + (XX>-X 5X4) sin(p'-p)

maximizes P. Since ('-,i) can take on only the four values 0, 7r/2, Ir, and 37r/2, F
can only take on the values

18
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Fa= XXc4 + X5X, (tt'-p=O)

Fb = X'X 8 - XcX' (p'-p=3ir/2)

F. = -Fb (A -Is=r/2)

Fd = -F. (p'-,=7Tr):

Accordingly, to determine which value of (u'- p) is the best inference, one determines the
maximum of F., Fb, Fc, Fd and infers the associated value of (p'-p).

19



Appendix C

INTEGRATION OF EQUATION (36)

Substituting Eqs. (35) and (33) into Eq. (36) results in

00

Pz= J
Z=O

00

X=Z

e(x-a) 2 /2s2 e-(X-Z) 2 /2S 2 dx dz.
irs 2

If x'/V2 s = x', a/-,/2 s = a', and z/V/2 s = z', then

P= 0
Z =o

00 00

x =zI 

2 -''~t2 -XZ22 e(x ) e(x dx'dZ'-
IT

Let x'-a' = x and z'-a' = z. Then

2P=_
7r

00

-a

JC"O
X=Z

e-X 2 e-(Xz) 2 dx dz.

If we let \/2x = x', and VZ = z', then

1P=_
IT

00

-
- x/2a' z/f

Z12 Z82]
[x12 -x'z' + ' + de- 4 4J dx' dz'.

Or,

00

7r

_- /2a'

00

ez 2/4 fJ

z

e-(x'-Z'2) 2 dx' dz'.

20
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Let x'-z'/2 = x and z'/2=z; then

e-z2 f
z

ex 2 dx dz.

Or, from Pierce,*

e-Z2 (1-erf z) dz.

x

2Or, since erf(x)

1
P

2

e-x2 dx and since a'/N/2 = a/2,

00

[erf(a/2) + 1 - Sferf z d(erf z)]
-a12

or

P= 1 [1+2 erf (a/2) + erf2(a/2] .

*B. 0. Pierce, A Short Table of Integrals, 3rd rev. ed., Ginn & Company, Boston, 1929, p 116.
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